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Abstract— Modeling human motion remains challenging for
synthesizing high-quality samples robustly from imperfect in-
put. We propose a probabilistic generative model to generate
and reconstruct motion sequences given past information and
control signals. The model adapts MoGlow by leveraging graph-
based model to capture the spatial and temporal information
of skeleton. We evaluate the model performance on a mixture
of human locomotion dataset with foot-step and bone-length
analysis. The results show comparable results on generating
long-term pose sequences, with improved robustness when
generating and reconstructing from imperfect inputs.

I. INTRODUCTION
Capturing human motion patterns is essential in animating

synthetic characters [1] and understanding behaviors for
social robotics [2]. Recent deterministic motion synthesis
methods [3], [4] are often limited to generate average poses
and fail to capture the natural variability. Probabilistic gen-
erative models allow modelling of the full space without
collapsing to an stereotypical pose [5], [6]. Normalizing
flow based methods allow tractable likelihood evaluation
and efficient parameterization, however, have rarely been
explored for human motion compared to alternatives. Our
model builds upon MoGlow [1], an autoregressive normal-
izing flow model.

One challenge that generative models are facing is imper-
fect information. Under less controlled environments, motion
capture (MoCap) systems inevitably suffer from missed
markers [7]. Unfortunately, most previous works are unsat-
isfactory in generating stable motion under such conditions.
Our model exploits the invariant spatial correlation of human
skeletons with a graph model to address this limitation.

The proposed framework conditions on control signals and
can generate diverse long-term human motion sequences.
When the past sequences are incomplete, the generation is
still robust and the missing markers can be reconstructed by
reversing the generation. We evaluate our framework on a
mixture of human locomotion datasets. The evaluation shows
a generation and reconstruction quality close to ground truth,
outperforming baseline under imperfect input data.

II. METHOD
Fig. 1 gives an overview of the graph-based motion glow

for generation and reconstruction. Our flow model includes
the three main reversible transformation layers of Glow, but
extended to graph structures. We further use ST-GCN [9] to
extract features from the autoregressive history input. More
implementation details can be found in [10].
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The input X and output z are represented as tensors with
spatial dimension M, channel dimension C and temporal
dimension Th. In MoGlow, the coordinates of one frame
skeleton data are concatenated to one vector. We convert the
skeleton data into an undirected graph G = (V,E), where V
is the set of nodes and E is the set of edges. The skeleton
graph used in this work is illustrated in Fig. 2. With a spatial
graph neural network (S-GCN), a spatial graph convolution
can then be defined as:

yi = ∑
v j∈Si

x j

Dvi(v j)
w(lvi(v j)), (1)

where xi and yi are the feature vector of node vi before and
after the convolution, Si is the neighbor set of vi, and w is a
weight function.

The actnorm layer performs data-dependent initialization
and invertible 1×1 convolution layer performs a soft permu-
tation of channels. Xa and Xb are the outputs of these two
layers. The affine coupling layer transforms half of the input
Xb1 based on the other half Xb2 and conditioning information,
h is the output of this layer. The coupling can then be written

[h1,h2] = [Xb1,(Xb2 +b)� s], (2)

where � is a Hadamard product and the scaling s and bias
b are computed with S-GCN, ST-GCN and LSTM:

gt = SGCN(Xb1,t), (3)

pt = ST GCN(X̂(t−Th):(t−1)), (4)

[st ,bt ] = LST M(gt , pt ,C(t−Th):(t)). (5)

Here, S-GCN captures the spatial graph information gt
from markers in the current time step t, ST-GCN extracts
spatial-temporal features pt from the past sequence, and
LSTM produces the scaling and bias with dependencies over
time.

For generation, we can generate a future pose from the
trained model using a latent vector zt since the flow model
is reversible. The generated Xt then becomes a part of
conditioning information for the next pose Xt+1. During
training, the motion data was augmented by lateral mirroring
and time-reversion. We reconstructed the incomplete poses
using the same model by reversing the generated sequences
X(t0):(Th) and control signal C(t0−Th):(Th) to X(th):(T0) and
C(Th):(t0−Th). The reversed sequences are regarded as control
information to generate markers to fill the holes of missing
markers.



Fig. 1: The overview of the framework for skeleton-based motion generation and reconstruction.

Fig. 2: The spatial graph of the human skeleton in this paper.
Each node represents the body marker on the right [8].

III. RESULTS

We consider a human locomotion dataset preprocessed
in [1]. The pose is represented by 21 marker coordinates as
shown in Figure 2 and the trajectory is represented 3 scalar
control signals include forward, sideways and rotational
velocities for each frame. To generate incomplete MoCap
frames, we set some markers to zero. We consider three
configurations. Our proposed graph-based model denoted as
STMG, the SMG without temporal convolution and MG uses
no graph structure. A video with generated examples can be
found at this link2

Footsteps analysis (see [1] for detailed definitions) is used
to evaluate foot-sliding artifacts in locomotion synthesis.
Footsteps can be detected as time intervals where the hor-
izontal speed of the heel joints is below a tolerance value
vtol . We incremented the tolerance vtol in small steps. We
note that in Fig. 3-(a), without missing markers, the curves
are close. However, when the given past data is incomplete,
in Fig. 3-(b) the curves of our STMG are closer to the curve
of ground truth. For evaluation, we detect the first tolerance
value v95

tol , for which at least 95% of the maximum number
of footsteps are estimated. These values are shown as black
dots in the figures. The results are also shown in Table I.

We further perform bone-length analysis to detect artifacts
such as flying-apart joints. As illustrated in Table II, with
complete past frames, all models achieve relative small
RMSE and σ of bone lengths. Again, given untrained imper-
fect data, MG performs poorly on this indicator, exhibiting
huge bone-length artifacts. For both SMG and STMG, the
RMSE and σ of bone-lengths are still small.

2https://kth.box.com/s/ylilqe0b5rbygo73rbi8gqetb2mhl7ls

(a) (b)
Fig. 3: Footstep analysis for complete (a) and incomplete (b)
past input: footstep count fest for each tolerance vtol . Black
dots indicate v95

tol .
Miss Model fest v95

tol µ σ

- GT 5 306 0.315 0.273

Complete
MG 5 276 0.298 0.318

SMG 5 285 0.294 0.242
STMG 5 275 0.316 0.267

Incomplete
MG 7 256 0.357 0.329

SMG 5 280 0.307 0.252
STMG 6 286 0.315 0.253

TABLE I: Results of foot-step analysis for motion gener-
ation: total number of footsteps fest , speed tolerance for
capturing 95% steps v95

tol , mean µ and standard deviation σ

of step-duration. The numbers closest to the ground truth are
shown in bold.

Data Model Generation Reconstruction
RMSE σ RMSE σ

Complete
MG 0.597 0.067 - -

SMG 0.191 0.039 - -
STMG 0.779 0.073 - -

Incomplete
MG 787638 12.138 80931 2.897

SMG 0.542 0.044 6.589 0.092
STMG 0.938 0.080 1.072 0.065

TABLE II: Results of bone-length analysis for human motion
generation and reconstruction. The best values are in bold.

IV. CONCLUSION

We propose a graph-based normalizing flow model to
tackle the limitations in earlier models of human motion gen-
eration and reconstruction. This new modelling framework
is an extension of MoGlow that is probabilistic and allows
inference of the exact likelihood. It utilizes graph convolu-
tional networks to improve the robustness of generation. In
the future, we plan to extend the graph-based motion glow
model to multiple scales to tackle more complex motions.
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