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I. INTRODUCTION

The purpose of this study is demonstrate a generation
framework which can online generate motions of different
styles. Data-driven methods [1]-[4] are widely used in pre-
vious works to model kinematic information of different
behaviors when analyzing human motion. We focus on the
3D human motion generation task utilizing motion prediction
models with meta-learning. We train a style-conditional
generative model with an unlabeled stylistic motion dataset.
Given historic motion, the model can predict future motion
or generate new styled motion based on one-shot imitation.
Fig. 1 shows an illustration of the overall framework.

While previous prediction works [5]-[11] focused more on
different actions, stylistic variations in actions that represent
the personality or mood are also crucial for motion gener-
ation. For example, the “angry” style in “crossing the road
in heavy steps” may be more important than the “walking”
action in some scenarios. One challenge in previous few-
shot learning works on multi-behaviors is that datasets often
require labels of the motions [12], but in general human
motion is very diversified and hard to interpolate using exist-
ing motions. Besides, unlike prediction problems, generation
tasks usually have no ground truth to compare with. For
the former problem, we assume all unlabeled motion data
from similar task space and learn the representation via self
supervision. We utilize one-shot imitation [13] to enable fast
adaptation during online use. For the latter one, we can
naturally evaluate the online motion generation framework
with consistent style using prediction benchmarks.

II. METHODS

1) Formulations: We first introduce the Markov Decision
Process(MDP) to model the generation process of the 3D
motion sequence similar to [6]. At each time-step t, the state
sy = {x;}LX7" is defined as all previous poses starting from
the initial one. The action a; = {V¢xm; -+ V(t41)xm—1} i
defined as the change of pose in the next length-m window.
The transition model is deterministic based on accumulated
velocity. The reward and initial state distribution vary for
different behaviors. This formulation satisfies Markov prop-
erty and removes the constraint on past sequence length.
Based on the MDP formulation, we extend the notion with
a probabilistic behavior encoding variable b € B represent
different styles(e.g., angry, depressed, childlike).
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Fig. 1. Given the historical (initial) motion sequence, the model would
output motion prediction based on input poses. If given a demonstration
of proud walking, the model can encode the behavior and generate future
motion of proud style based on the initial poses.

2) Memory-based meta learning: To learn the behavior-
conditional policy m : S x B — A from heterogeneous
multi-task demonstrations as the desired generative model,
we need to meta-learn an inference model ¢(b|7) and a policy
m(als,b), with 7 representing a demonstration trajectory.
When given a new demonstration 7, we can sample b ~
q(b|7) and use the policy to generate or predict. We assume
no labelling on the motion data and no prior knowledge on
the behavior distribution.

3) Imitation learning with mutual-information regulariza-
tion: Consider a trajectory 7 = {s1.1,a1.7} generated with
the encoded behavior b, the trajectory distribution induced
by the learned policy 7 parameterized with 6 is:

~

po(T|b) = H

(a¢|se, b)P(seq1lse,ae) (1)

We define the behavioral cloning loss as:
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However, directly optimizing over the behavior cloning
loss on expert dataset Dg could lead to cases where the
model simply ignore b, i.e, the policy just treats b as an
useless augmentation to the states and learn a global policy.
We need to make sure that the behavior variable b affect the
trajectory generated by the policy. The mutual information
between the behavior and the generated trajectory can serve
as a useful regularization. By definition, the mutual informa-
tion between 7 and b under joint distribution is:
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Fig. 2. Policy network structure. The behavior takes styled demonstration & for styled generation task and first L frames of state pose vector for prediction

task. The decoder recurrently output the velocities of m steps as action.

TABLE I
MOTION PREDICTION ERROR IN EULER ANGLE ERROR FOR WALKING, EATING, SMOKING, AND DISCUSSION IN THE HUMAN3.6M DATASET FOR
HORIZION OF 80, 160, 320 (SHORT-TERM), 1000MS (LONG-TERM).

Action Walking Eating Smoking Discussion
ms 80 160 320 1000 80 160 320 1000 80 160 320 1000 80 160 320 1000
Res. sup [9] 028 049 072 NA | 023 039 062 NA | 033 061 1.05 N/A | 031 0.68 1.01 NA
ConvSeq2Seq [14] | 0.33 054 0.68 092 | 022 036 0.58 124 | 026 049 0.96 1.62 | 032 067 094 1.86
Ours 023 034 0.55 071 | 017 032 055 115 | 025 046 088 165 | 030 058 083 1.81
and show the one-shot imitation performance on the same
I(7,b) = D1 (p(r, b)||p(7)p(b)) walking action. We use the same sequence of angry walking
) ’ . . ..
_E llog p(r, b) — log(p(r)p(b))] behavior as the initial state and use three sequences of angry,
= E(mb)~p(r.b) [OBPAT E\P\T)P (3) proud, and depressed walking as styled demonstrations. We

= Epop(b),r~po (+]p) [10g Do (b|T) — log p(b)]
~ ErpnDp brq(b)re) 108 44 (0] 7E) — log p(b)]

The posterior distribution pg(b|7) is intractable and we use
q4(b|T) as a variational approximation, we can conclude the
mutual information loss as:

Linfo = _ETENDE,bwq(b|TE) log Q¢(b|T) (4)

Therefore the overall the meta-training objective is:

min Lpc + ALinto )]
0,9

where )\ is the weight hyper-parameter of loss terms.

4) Policy model and algorithms: As shown in Fig. 2, we
use a behavior encoder ¢ to encode a behavior latent variable
b, then the sequence-to-sequence policy encoder takes in the
state s; = 1, ..., Tyxm, the decoder takes in b and outputs
fixed m-length action a; = V¢xm, ---V(t41)xm—1 Which is the
predicted pose velocities under this certain behavior.

During training, an extensive set of unlabelled motion
sequences is given for training. For testing, by inferring a
b~ q¢(~b|)~( ), we can generate same-behavior motion with
mo(als,b).

III. EXPERIMENTS

We first evaluate the prediction performance. We run
experiments on the Human3.6M dataset [15] and compare
it with previous benchmarks. The results are shown in Table
I, data processing methods follows the previous benchmarks.
The goal is to confirm that we reach acceptable performance
in the prediction task.

Then we evaluate the performance of controlled generation
by a stylistic motion dataset [16] containing the same actions

can see the generated sequences with the same initial frames
and future poses of different styles in Fig. 3. The model can
perform styled generation after one-shot imitation for seen
and unseen styles.
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Fig. 3. Qualitative styled generation results. Style affects the future poses.
(difference in legs and hands)

IV. CONCLUSION

We proposed a new learning method for the multi-style
motion generation framework. we present an approach to
learn an adaptive motion policy from an unlabeled multi-style
motion dataset. The model is trained with behavior cloning
and regularized with mutual information loss. Experiments
show that our proposed method can handle prediction and
styled generation tasks via one-shot imitation well. The
overall framework provided a high level structure for hetero-
geneous motion generation and can incorporate any motion
prediction model or one-shot learning method.
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