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Abstract— In this paper, we tackle the problem of human-
robot coordination in sequences of manipulation tasks. Our
approach integrates hierarchical human motion prediction with
Task and Motion Planning (TAMP).

We first devise a hierarchical motion prediction approach
by combining Inverse Reinforcement Learning and short-term
motion prediction using a Recurrent Neural Network. In a
second step, we propose a dynamic version of the TAMP algo-
rithm Logic-Geometric Programming (LGP) [1]. Our version
of Dynamic LGP, replans periodically to handle the mismatch
between the human motion prediction and the actual human
behavior. We assess the efficacy of the approach by training
the prediction algorithms and testing the framework on the
publicly available MoGaze dataset [2].

I. INTRODUCTION
As robots become more capable, they will increasingly

share space with humans. Consider the case of tidying a
kitchen, where the human is interested in having maximal
support from the robot while requiring a minimal amount
of interference with its task objectives. Humans do this
naturally when they collaborate. For instance, one could put
food back into the fridge while the other collects and cleans
the dishes. The case falls into Human-Robot Collaboration
(HRC) category, which focuses on robotic systems able to
perform joint actions with humans [3], [4].

II. HIERARCHICAL MOTION PREDICTION & PLANNING

For motion planning, we introduce Dynamic LGP, which is
a variant of LGP, to solve the minimal interference Human-
Robot tasks. The basic idea of LGP is to decompose the
task with two levels of abstraction. At the highest level we
consider a discrete set of actions A = {ai}i=1

N , for instance
move, pick and place. We call a skeleton, a sequence of
symbolic actions a1:K . A fully instantiated plan is then a
skeleton, together with a motion trajectory x : [0, T ] → χ,
where χ = C × H × O, the Cartesian product of the robot,
human and movable object configuration spaces respectively.

In our experiments, we consider a cost function c :
(qt, q̇t, q̈t, s) 7→ ct ∈ R, is a combination of differentiable
maps, penalizing velocities and accelerations of the robot.

Obstacle avoidance and goal manifold are enforced using
equality and inequality constraints hp, gp in the phase k(t) ∈
[t/T ] conditioned on a discrete symbolic state sk ∈ S.

To impose transition conditions between phases, the switch
functions hsw, gsw define equalities and inequalities con-
straints conditioned on the transition action ak. We assume
that the equality and inequality functions are differentiable.

Fig. 1: Pepper carries a plate while the human from the
MoGaze dataset is carrying a green cup. The supporting
motion plan for setting the table resulting with from Dynamic
LGP minimally interferes with the human task.

The task is then to find a global path x : t 7→ xt, which
minimizes the following LGP:

min
x,a1:K ,s1:K

∫ KT

0

c(x(t), ẋ(t), ẍ(t), sk(t))dt

s.t.
x(0) = x0, hgoal(x(KT )) = 0, ggoal(x(KT )) ≤ 0

∀t ∈ [0,KT ] : hp(x(t), ẋ(t), sk(t)) = 0,

gp(x(t), ẋ(t), sk(t)) ≤ 0

∀k ∈ {1, ...,K} : hsw(x(t), ẋ(t), ak) = 0

sk ∈ execak (sk−1)

sK ∈ Sgoal

where the path is global continuous x and contains K ∈ N
phases, each has fixed duration T > 0.

For a given symbolic goal set, we rely on action feasibility
and state transition checks operations, which allow us to
instantiate a search process using any tree search algorithm
(e.g., depth first, breadth first). If a feasible skeleton at:K
leading to symbolic goal state sg ∈ Sgoal is found, a Non-
Linear “trajectory optimization” Program (NLP) is defined.
The NLP considers geometric switches in the system kine-
matics with long-term dependencies. In our implementation,
we use an interior point method [5], [6] to optimize this NLP.



(on X Y) check if exists a stable 3D xyφ joint from X to Y
(at X Y) check if ‖xX − xY ‖2 ≤ r|r ∈ R

(carry X Y) check if exists a stable free joint (6D) from X to Y

TABLE I: Predicate inference

Start State (0, 4, 0, 1, 0, 3, 1, 0, 1, 2)
Actions Go to white shelf

Pick up cup
Go to table

Place
End State (1, 3, 0, 1, 0, 3, 1, 0, 1, 0)

TABLE II: Example high-level trajectory

1) Dynamic planning: As the actual human behavior may
deviate from the prediction, the motion trajectory or the
skeleton a1:K may become sub-optimal or even unfeasible.
Hence a crucial component for dynamic LGP is to infer
the current symbolic state from the current environmental
condition.

For example, the predicate (on X Y) is inferred by
checking in the system kinematic tree if there is a stable 3D
xyφ joint from X to Y. Table I describes our setup symbolic
inference for the predicates using the system kinematics.
Specifically, querying (human-carry, ?x - object) or (agent-
carry, ?x - object) predicates can be done using (carry X
Y) check. This symbolic query is the primary mechanism
encoding the human intention into the domain design. For
example, in the set-table task, the proposition describes the
object carried by the human (human-carry, object) defined to
be in the goal set, assuming that the human intentions are
always to cooperate to complete the task. Then the robot can
plan the remaining actions to reach the goal.

A. Long-Term Motion Prediction using Hierarchies

The motion prediction layer infers likely symbolic and ge-
ometric changes in the workspace, given an initial symbolic
state st and a geometric state xt. Recall that the geometric
state xt = (qt, ht, ot), concatenates the robot qt, the human
ht, and the movable object ot configurations.

At the top level, our hierarchical motion prediction uses
Maximum Entropy Inverse Reinforcement Learning (MaxEnt
IRL) [7] and a low-level which performs full-body motion
prediction conditioned on sequence of sub-goals induced by
sequence of high-level actions given by the top-level.

1) Goal-Conditioning: To be able to use motion predic-
tion as a sub-policy, we need a predictive function ht+1:T =
f(h0:t, g

∗) that computes a trajectory of future human states
ht+1:T given previous observed states h0:t and a goal g∗.
We use VRED, a recurrent neural network-based model for
predicting motion [8] and make it goal-conditioned by adding
a three-dimensional position gt to the input of the network at
every timestep. Note that we could also use other planning-
based predictors together with MaxEnt IRL. However, we
use VRED due to the scaling property of deep models that
learns high-dimensional configuration trajectory of human-
motion captures.

Single planning Dynamic planning
Success rate 91.2% 100%

Symbolic plan time 0.0005± 0.0001(sec) 0.0006± 0.0002(sec)
Task time reduction 0.298± 0.078 0.300± 0.100

Path ratio 1.000 0.626± 0.155
LGP replan count - 3.0± 0.87

TABLE III: Dynamic LGP with Human Prediction

2) Network State Representation: We learn a policy π
that can schedule discrete goals using tabular MaxEnt IRL
algorithms based on state frequency calculations. For the
MoGaze dataset the discretized state is given by the num-
ber of objects on a location and the human position as
follows: (cups-table, cups-shelf1, cups-shelf2, plates-table,
plates-shelf1, jugbowl-table, jugbowl-shelf1, jugbowl-shelf2,
humanPos). The action space is discretized similarly. An
example skeleton can be seen in Table II.

We use heuristics for interfering with the exact goal for the
human hand or pelvis, for example, by computing the closest
point on the table to the human which is not occupied. The
heuristics could be further improved by the use of human
intention prediction as in [9].

III. RESULTS & CONCLUSIONS

A. Long-Term Motion Prediction using Hierarchies

We first compare the original VRED implementation with
the VRED conditioned on goal inputs on the MoGaze
dataset. Results show that the goal-conditioned prediction
network achieves both a better angular loss of 7.99 instead of
10.14 and a significantly better position loss of 3.84 instead
of 12.56, than the network without goal-conditioning. This is
expected because the goal-conditioned network uses oracle
information of the goal position.

To test the accuracy of the high-level policy, we extracted
the task of setting up the table for one person from the
dataset. We then run tabular MaxEnt IRL, showed that the
learned policy solved the task in 80% of the cases. However,
a perfect imitation was achieved solely in 16% of the test
runs of the cross-validation. This is because the algorithm
is limited by our symbolic state and action representation.
Including more complex state features, e.g., from the 3d
environment, could further improve the algorithm.

B. Dynamic LGP with Long-Term Prediction

In this experiment, we choose 8 data segments from
MoGaze, and produce the Long-Term Prediction outputs
described in Section II-A. We run 5 task instances for each
segment to capture the human motion prediction statistics
due to its stochasticity. The overall task IoU between the
robot and the human objects is 0.34±0.13. Table III reports
task statistics for this experiment. It shows that Dynamic
LGP has higher success rates and produces shorter paths and
needs slightly more time to complete than single planning.
These plans also reduce the total time to execute the task by
a factor approaching 2, which is what one would expected
when two agents collaborate at a task.
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